Abstract

I analyze a model in which a great power wishes to signal resolve to an enemy and restraint to a potential diplomatic partner. Diplomatic support lowers the costs of war, but securing it may fail to convey resolve to an enemy tempted to risk war. First, war is more likely when third parties generally believe the great power to be restrained. Second, the threat of losing diplomatic support with a modest effect on the costs of war discourages risky bluffing. Third, the promise of diplomatic support that substantially lowers the costs of war can lead resolute states to mask their resolve, building coalitions at an elevated risk of war despite the availability of a credible signal. The desire to secure diplomatic support simultaneously makes signaling resolve easier and less attractive, demonstrating an endogenous, reciprocal link between structural features of the international system and the outcomes of crises involving great powers.
Great powers often do as they please in international politics. They fight more wars and spend more on their militaries than weaker states, they topple and support foreign governments, they redraw borders and pry open new markets, and they flout international law even as they shape the global legal structure. Considerable military capabilities and political prerogatives aside, great powers can nonetheless struggle to convey to weaker opponents their willingness to fight (see Sechser 2010), even when they build diplomatic coalitions around widespread support for their foreign policy goals. Broad, overwhelming diplomatic support should in principle bolster the credibility of military threats, but its effects are not so clear. American coercive threats against Iraq in 1991 and Serbia in 1999 had widespread diplomatic backing, yet despite the support of other wealthy, powerful, and influential states, in each case the United States went to war against weaker opponents that doubted its willingness to wage war in pursuit of its aims. What accounts for this paradoxical pattern, in which great powers manage to secure ostensibly overwhelming diplomatic support yet still fail to convince targets of their willingness to go to war?

The answer lies in a basic tradeoff: great powers pursue diplomatic support to limit the costs of war, but the very process of winning that support can lead opponents to doubt their willingness to fight. A tension exists between the desire to signal restraint to one audience (potential diplomatic supporters worried over a great power’s foreign policy ambitions) and resolve to another (immediate opponents in crisis bargaining, who might risk war if they doubt one’s resolve). This tradeoff shapes great powers’ ability to convey their intentions, the formation of diplomatic coalitions, and the probability that disputes escalate to war. Incentives to bluff can undermine communication for all states (cf. Fearon 1995), but a great power’s military might creates an additional challenge that minor powers rarely face: convincing third parties that it is concerned only with its present opponent, as opposed to expansionist or “generally aggressive” (Powell 1999, pp. 193-194). Even if third parties that believe a great power’s aims to be too expansive do not balance against it militarily, they can create diplomatic obstacles that raise the costs of war, from stalling or blocking...
international-institutional authorization to denying financial and economic support to refusing to share resources or intelligence. Great powers prefer widespread support to opposition, minimizing the costs of war and keeping their opponents isolated, and they often build such diplomatic coalitions not by conveying a general willingness to use force but by convincing others of their restraint, or a willingness to fight only over a few very important issues. Signaling such restraint might be useful in building a diplomatic coalition, but it may also tempt an uncertain opponent to risk war with its bargaining strategy.

I analyze a model of crisis bargaining in which a great power faces two uncertain audiences: an enemy unsure of what bargains the great power will accept in lieu of war and a potential diplomatic partner that wishes to support only restrained great powers. An enemy that believes the great power to be resolute offers better terms, but a partner that believes the great power to be restrained can lower the costs of war. While the great power would like to convince the enemy of its resolve, it wishes to convince the third party that it is restrained (and thus not a future threat), yet each audience draws inferences from the same actions during the crisis. There are three key results. First, war is more likely when the great power is generally believed by third parties to be restrained. Second, when diplomatic support has only a modest effect on the costs of war, the threat of losing it can discourage the use of large military threats as risky bluffs, explaining how multilateral interactions can (contrary to received wisdom) facilitate credible signaling and a reduction in the risk of war. Third, when diplomatic support has a more substantial impact on the costs of war, even resolute great powers attempt to convey restraint, using moderated threats to build diplomatic coalitions yet simultaneously failing to reduce their targets’ uncertainty, sustaining an elevated risk of war despite the availability of credible signals of resolve. Great powers in this case can signal resolve but choose not to. A strategy designed to preserve the international order in the long run—diplomatic coalition-building via strategic restraint (cf. Ikenberry 2001)—can thus produce elevated chances of war in the short run.

The analysis shows that multilateral processes can shape interactions typically treated
dyadically (see Croco and Teo 2005, Poast 2010). Some accounts link complex multilateral interactions to greater levels of uncertainty (Huth, Bennett and Gelpi 1992, Lake 2010/11), but the addition of third parties to a simple crisis bargaining model can (under some conditions) contribute to a reduction of uncertainty and lower risks of war. Diplomatic coalition-building rarely figures into studies of extended deterrence (Werner 2000, Yuen 2009), alliance politics (Fang, Johnson and Leeds 2014, Johnson and Leeds 2011, Leeds 2003, Trager 2015) or military coalitions (Wolford 2015, Wolford and Ritter n.d.), but potential diplomatic partners can affect both whether and how great powers credibly communicate their intentions. The model explicitly links traditional levels of analysis, showing how a systemic attribute—prevailing third-party beliefs about a great power’s restraint—shapes and is endogenously shaped by interstate crises. System-wide beliefs over a great power’s restraint determine patterns of international cooperation and violent conflict, but the tools that powerful states wield to influence third-party beliefs can also shape the beliefs of their immediate adversaries, sometimes in undesirable or unanticipated ways. Military threats that are effective at the dyadic level can be counterproductive at the systemic level, and vice versa. The theory thus offers a rationale for linking otherwise disparate literatures on great power politics, military and diplomatic multilateralism, and the elusive concept of world opinion—here conceptualized as shared beliefs about great power intentions among smaller, potentially fearful states that watch great power behavior with great interest.

Great Powers and Diplomatic Coalitions

Great powers may not always have a significant military interest in building coalitions, but their outsized capabilities ensure that they very often have a diplomatic interest in doing so. Minor powers generally lack the wealth and power projection capability to pose threats to states other than their immediate opponents, but great powers operate on a big bigger

1Kreps (2011) examines the construction of diplomatic coalitions in American interventions, but does not examine their impact on signaling and the escalation of disputes to war.
stage; they can pose such wide-ranging threats beyond today’s opponent that they face an additional challenge of reassurance (Kydd 2005). Third parties fearful that great powers will turn against them tomorrow after disposing of today’s opponent may join balancing coalitions (Powell 1999, Voeten 2005, Wolford 2015) or wield a variety of non-military tools, from economic warfare to obstruction in international institutions to indirect support for a great power’s immediate opponent (Kelley 2005, Pape 2005, Paul 2005). Securing the diplomatic support of wary third parties can thus lower the costs of war, a significant boon for great powers, who engage frequently in international conflict (see Fordham 2011).

Japan, for example, provided quiet but extensive logistical support for United Nations forces during the Korean War (Wada 2013), and it made a sizable financial contribution to help offset the costs of the 1991 Persian Gulf War for the United States, its coalition partners, and neighboring states (Purrington 1992). Neither contribution marked such a significant shift in the balance of military capabilities that we would label Japan a military coalition partner (Wolford 2015, p. 16), but as a diplomatic coalition partner it helped reduce substantially the costs of each war. Failing to secure diplomatic support, by contrast, can raise the costs of war by creating logistical and financial difficulties or, at the extreme, provoking a third party to support one’s enemies, as Iran did during the civil war that followed the American-led invasion of Iraq in 2003 (Kilcullen 2006). Even less direct forms of opposition can raise the costs of war if other states refuse to extend wartime credit (see Shea 2014) or cooperate to impose economic sanctions. The Arab oil embargo, launched in response to American support for Israel in the 1973 Yom Kippur War, seriously disrupted Western economies (Gaddis 2005, Tyler 2009). American president Richard Nixon, aware of the threat as war approached over in 1973, cautioned that “we don’t want to be so pro-Israel that the oil states—the Arabs that are not involved in the fighting—will break ranks…PR [public relations] is terribly important” (quoted in Tyler 2009, p. 211). Great powers thus have strong incentives to care about “PR” in crisis diplomacy, because failing to secure diplomatic cooperation can increase the costs of waging war.
Great powers can secure third-party diplomatic support in one of two general, if different, ways. First, they may offer sufficient spoils from victory (Schweller 1994) or pose such grave threats (Mearsheimer 2001) that some states choose to bandwagon (in the latter case out of fear), respectively profiting from or hoping to avoid a great power’s aggressiveness. Second, great powers may seek to reassure third parties, signaling not that they are resolute (i.e., generally willing to use force) but that they are restrained, willing to use force in only a limited number of circumstances—signaling their commitment to the rules of the international order and the rights of weaker states (see Ikenberry 2001, Voeten 2005). Conveying restraint is generally attractive to status quo powers, such as the United States since 1945, who wish to ensure compliance with the existing order and deter challenges to it; convincing weaker powers of its restraint is a key part of such a strategy. However valuable it may be, achieving reassurance is neither easy nor cheap (Kydd 2005, Kydd and McManus n.d.); aggressive states would prefer that potential victims believe them to be restrained, which undermines the credibility of simple verbal claims of restraint.

The approval of international institutions can signal restraint under some conditions (Chapman 2011, Kreps 2011, Thompson 2006), helping third parties coordinate on expectations that great powers are worth supporting (Voeten 2005), though this frequently requires a moderation of aims in order to win the cooperation of potential partners (Wolford 2015, Ch. 5). If great powers worry that potential supporters will draw undesirable inferences from public threats directed against adversaries, they may also attempt reassurance through secret diplomacy. Secret communication can limit escalation between adversaries (Carson 2016, Kurizaki 2007, Yarhi-Milo 2013), and keeping negotiations secret can also shield states from negative third party reactions (Brown 2014a,b). Some non-crisis negotiations are easy to keep secret (Crall and Martin 2013), but international crises are often public events (see Fearon 1994); even if leaders might wish to keep their actions (or lack thereof) secret, they often have no choice but to act in public view. Further, while secret reassurance might be possible with respect to some third parties, it is unlikely to be possible
for all third parties; great power military threats and bargaining positions are visible—and of interest—to far more states than can be offered specific, private signals of reassurance. Third parties not privy to secret reassurance may still draw undesirable, diplomatically consequential inferences about a great power’s restraint (or lack thereof).

Opportunities for secret reassurance are not always present, but shared beliefs among third parties about great power intentions are an ever-present feature of the international system. Great powers rely on the cooperation or consent of states in their respective hierarchies (Lake 2009) and, outside their hierarchies, among those who acquiesce in their provision of global public goods (Gilpin 1981). Diplomatic cooperation can be active or passive, but it depends on whether less-powerful states believe that today’s cooperation or acquiescence will be rewarded with exploitation tomorrow. Minor powers cooperate with great powers when the latter are believed to be restrained, or to have only “limited expansionist goals” (Kydd 2005, pp. 29-36). Otherwise, passing on the chance to drain resources from an expansionist, aggressive great power can prove to be a high-stakes instance of ex post regret (see Wolford 2014a). The prospects of securing such diplomatic support, or of provoking opposition, depend on prevailing beliefs in the international system about the great power’s general willingness to use force. This distribution of beliefs about great power intentions is a system-level variable, similar to the distributions of power (Monteiro 2011/12) and ideology (Braumoeller 2012, Mitchell 2002) and the offense-defense balance (Jervis 1978), though one that can change far more rapidly than the material factors typically associated with these other attributes of the system. Kydd (2005, Ch. 5) shows that levels of trust can influence cooperation with hegemons, but the link between prevailing beliefs about intentions and other strategic processes—crisis bargaining in particular—remains obscure.

Diplomatic coalition-building by great powers rarely enters directly into the study of crisis bargaining. Tying hands against expansive aims can discourage balancing, encourage cooperation, and lower the costs of war (Thompson 2006), yet despite the persistence of international conflicts into the unipolar era (Monteiro 2011/12), the strategic consequences
for crisis bargaining, signaling, and war are rarely explored (but see Chapman and Wolford 2010). To the extent that theories of crisis and war focus on multilateral processes, they do so in the context of extended deterrence and alliance commitments (Johnson and Leeds 2011, Leeds 2003, Trager 2015) or military coalitions (Wolford 2015, Wolford and Ritter n.d.), where coalition-building involves the aggregation of capabilities aimed at shaping the military balance. Diplomatic coalitions, though, shape the expected outcome of war by altering its costs. They form not merely when states can offer partners sufficient rewards in return for assistance but when potential partners can be confident that the great power seeking their support will not go on to reward that support by posing a subsequent threat after today’s conflict. Great powers can form diplomatic coalitions by convincing potential partners of their restraint, but the means of conveying restraint—limiting aims and moderating military threats—may have unintended consequences for great powers’ ability (and possibly their desire) to credibly convey intentions to opponents during crises.

Model

Suppose that a great power (1) and another state (2) disagree over how to divide a pie of unit value in the shadow of war, while a third state (3) must commit to supporting or opposing state 1 diplomatically should war break out. States 2 and 3 begin the game uncertain over 1’s costs for war—i.e., whether it is restrained or aggressive—but may be able to improve their estimates after 1 makes a costly military threat. While both 2 and 3 would prefer that 1 be restrained in its willingness to fight, leading to a better deal for the former and reduced risks of future exploitation for the latter, the great power would like the other players to hold divergent beliefs. 1 extracts a better bargain from an enemy that believes it to be resolute, but 1 may forfeit the diplomatic cooperation of a third party that believes it to be generally willing to use force. 3’s choice is not military but diplomatic; its opposition raises state 1’s costs for waging a potential war, leaving the military balance unaltered (see Wolford 2015,
Figure 1: The sequence of play

\[
\begin{align*}
&N \text{ chooses } c_1 \sim U[c_1, \bar{c}_1] \quad 1 \text{ chooses } s = \{s, \bar{s}\} \quad 2 \text{ supports or opposes } \quad x \in [0, 1] \quad 1 \text{ accepts or rejects}
\end{align*}
\]

Ch. 2). However, costlier wars in the present drain resources that would otherwise be used in the future. I refer to 3 as a single state to keep the discussion simple, but it can also be viewed as a kind of median voter, a pivotal third party among many whose support or opposition determines whether 1’s costs of war see a net rise or fall.

Figure 1 shows that the game begins as Nature chooses 1’s costs for war \((c_1 > 0)\), which define its type, from the uniform distribution \(c_1 \sim U[c_1, \bar{c}_1]\) and reveals it only to 1.\(^2\) When \(c_1\) is low, 1 is relatively resolute (or aggressive), and it is relatively irresolute (or restrained) when \(c_1\) is higher. An aggressive type pays low costs for war, such that it is more willing to use force in general—i.e., in subsequent disputes (see Wolford 2007)—than a restrained type, who pays higher costs for war in general. The great power’s willingness to fight is an enduring characteristic; while 2 cares about 1’s willingness to fight today, 3 cares more about 1’s willingness to fight tomorrow. Present resolve means future aggressiveness, because more potential issues will be worth fighting over than they would be for a restrained state with higher costs of war (see Powell 1999, Ch. 5). The commonly known distribution from which 1’s type is drawn constitutes the other players’ prior beliefs over 1’s costs for fighting, and it represents the information available to the uninformed players at the beginning of the crisis. 1’s type distribution, derived from past behavior and communication, is commonly

\(^2\)I choose the uniform distribution to pin down a clear analytical solution, but the key results—in particular, the existence of each equilibrium—require only that \(c_1\) be drawn from a differentiable distribution with strictly positive support.
known, so it has a natural interpretation as a structural feature of this stylized three-actor international system: the distribution of beliefs about 1’s general willingness to fight, its intentions towards other states beyond the current target. This prevailing belief is not only structural, shared by and relevant for all actors, but also socially constructed (see, *inter alia*, Morrow 2014, Wendt 1999), in that other players update their collective beliefs over the great power’s type in response to 1’s observable behaviors.

After learning its own type, state 1 chooses whether to make a large or small threat $(s > 0)$, an action like military mobilization that is costly up front and shapes the probability with which 1 wins a war. The threat, for which 1 pays a marginal cost $(a > 0)$, can be small $(s = \underline{s})$ or large $(s = \bar{s})$, where $0 < \underline{s} < \bar{s}$. The larger the mobilization, the greater the chances of prevailing in war; 1 defeats 2 with probability $p(s) \in (0, 1)$, where $\frac{\partial p(s)}{\partial s} > 0$, while 2 wins with the complementary probability. After observing 1’s mobilization, 3 chooses whether to support or oppose 1 diplomatically. If 3 opposes, then 1 pays additional costs $(d > 0)$ for fighting; when d is high, 3’s support is extremely valuable—say, direct financial or logistical support—and when d is low, 3’s support is less consequential, such assenting to the authorization of the use of force by international institutions. Under 3’s opposition, 1’s total costs of war are $(c_1 + d)$, where it pays $c_1 > 0$ regardless of 3’s choice. 2 pays $c_2 > 0$ in the event of war. Letting $j = 1$ when 3 supports 1 and $j = 0$ when it opposes 1, the primary disputants’ expected war payoffs are

$$EU_1(\text{war}) = p(s) - c_1 - d(1 - j) \quad \text{and} \quad EU_2(\text{war}) = 1 - p(s) - c_2,$$

where war is a costly lottery that allocates the whole prize to the winner.\(^3\)

Following 3’s choice, 2 proposes a division of the prize in which 1 receives x and 2 receives $1 - x$ if 1 accepts. If 1 rejects, the two states fight a war. While 1 and 2 are concerned primarily with the disposition of the prize, 3’s payoff depends on 1’s type—that is, whether

\(^3\)The model’s solution is not substantively different when 3’s support for (opposition to) 1 implies opposition to (support for) 2. I use the simpler specification here, but the alternative might be useful for analyzing superpower competition during the Cold War or crises between two great powers more generally.
1 is restrained or aggressive. Anticipating future bargains with state 1, the third party expects to do better when the great power is restrained and worse when 1 is aggressive; an aggressive great power is more likely than a restrained one to threaten and wield force against other states, like 3, in the future. Joining 1’s diplomatic coalition entails opportunity costs $\sigma > 0$ in terms of foregone priorities or policy adjustments, and opposing raises 1’s costs for war, requiring it to use resources that might otherwise be used against 3 in the future (see also Wolford 2015, Ch. 5). If 3 supports, it receives $-\sigma + \phi u_3(c_1)$, where $u_3(c_1) > 0$ is an increasing function of 1’s type ($\partial u_3(c_1) / \partial c_1 > 0$) and ϕ the direct military threat posed by 1’s military capabilities (ϕ). To keep the analysis simple, let $u_3(c_1) = c_1$. If 3 opposes, it saves the costs of joining the coalition, and 1’s material threat is reduced by resources drained from a costlier war ($r \in (0, 1)$), such that it receives $(1 - r)\phi u_3(c_1)$. Thus, supporting 1 is only worth the cost when 3 believes that it is helping a restrained great power committed to the international order; opposition, by contrast, can make future aggression more difficult.

The following functions define payoffs over the game’s terminal nodes of settlement and war, both with and without diplomatic support. For state 1,

$$u_1 = \begin{cases}
-\alpha s + x & \text{if settlement } \forall j \\
-\alpha s + p(s) - c_1 & \text{if war and support} \\
-\alpha s + p(s) - c_1 - d & \text{if war and opposition.}
\end{cases}$$

For state 2,

$$u_2 = \begin{cases}
1 - x & \text{if settlement } \forall j \\
1 - p(s) - c_2 & \text{if war } \forall j,
\end{cases}$$
and for state 3,

$$u_3 = \begin{cases}
-\sigma + \phi u_3(c_1) & \text{if support} \\
(1-r)\phi u_3(c_1) & \text{if oppose.}
\end{cases}$$

The model retains some features common to two-player crisis bargaining games, in that an informed side can attempt to signal resolve with costly actions before trying to divide the pie (e.g. Arena n.d., Fearon 1997, Slantchev 2005). Other models introduce third parties with different information and roles in the conflict: Werner’s (2000) foundational three-player game occurs under complete information, Yuen (2009) treats intervener preferences as a source of uncertainty, Favretto (2009) shows how the commonly known preferences of third parties can reduce the impact of bilateral uncertainty, and Trager (2015) shows how third-party commitments can enable costless communication between adversaries.4 In the most similar model, Wolford (2014b) introduces a potential military partner with preferences over the crisis outcome and the costs of the war, but the partner is also informed of 1’s type and can affect the military balance with its alignment choice. In the present formulation, the third player is a potential diplomatic partner, such that it cannot affect the raw military balance, and it begins the game just as uncertain as the target over 1’s willingness to fight. This creates a signaling dilemma derived from systemic attributes thus far unexplored in the literatures on crisis bargaining, multilateralism, and war.

\textbf{Analysis}

How do great powers manage the desire to use a single action to convince two audiences of different facts in crisis bargaining? The answer depends on (a) the extent to which 3’s opposition increases 1’s costs for war and (b) whether 3 conditions its support on 1’s military

4Johns (2007) examines agents who hold information private from two principals in an international-bureaucratic, as opposed to crisis bargaining, framework.
threat. When 3 can alter 1’s costs of war and credibly promise to oppose large mobilizations, the threat of diplomatic opposition can discourage restrained types from bluffing with large threats; at other times, it encourages aggressive types to issue small threats, mimicking restrained types and preventing the revelation of information that would otherwise reduce the chances of war. These patterns emerge in two types of Perfect Bayesian Equilibrium (PBE), where strategy profiles are sequentially rational and weakly consistent with beliefs updated according to Bayes’ Rule wherever possible (Fudenberg and Tirole 1991, Ch. 8). In a pooling equilibrium, 1 makes the same threat (large or small) regardless of its type, preventing other players from updating their beliefs. In a semi-separating equilibrium, 1 plays a cutpoint strategy in which some types make the large threat while others make the small threat, allowing other players to update their beliefs over 1’s restraint.\(^5\) After detailing how 2 and 3 condition their strategies on 1’s threat behavior, I discuss the conditions under which each type of equilibrium emerges.

The analysis rests on two substantive assumptions. First, 1’s costs for war are never believed to be so large as to make fighting incredible, such that \(c_1 < p(s) - d\). This ensures that 2 faces a genuine risk-return tradeoff in choosing its proposal (this is also the most interesting case), and that its proposals are always interior, or that \(x^* \in (0, 1)\), which simplifies the analysis at no cost to the conclusions drawn. Second, the use of military threats is not prohibitively costly for state 1, or

\[
\left(p(s) - p(s) \right) - a (\bar{s} - s) \equiv M > 0 \iff a < \frac{p(\bar{s}) - p(s)}{\bar{s} - s},
\]

such that the net military gain from making the large threat is positive. For ease of exposition, let \(M\) denote this net military gain. This ensures that any choice by state 1 not to make the large military threat \((s = \bar{s})\) is a best response to other players’ strategies and does not depend on conditions under which such a threat might be ex ante too costly. This stacks the deck against the revelation of information, increasing the analyst’s confidence in the effects

\(^{5}\)Posterior beliefs thus retain the uniform distribution associated with uninformed players’ priors.
of the proposed mechanisms to lead to either credible signaling or pooling on small military threats. This restriction also implies that the theoretical model applies to those states that can afford to engage in military mobilizations as signals of intent: the great powers whose multiple audience problem motivates the analysis.

The Multiple Audience Problem

The great power's strategic challenge is to use the same signal to convince two audiences, both of which can affect its ability to get what it wants, of conflicting facts: state 2 of its resolve and state 3 of its restraint. Before specifying how 1 responds to this dilemma, I first derive general features of 2's crisis bargaining strategy and 3's diplomatic strategy, then show how they relate to 1's initial choice of making large or small military threats.

Begin with 2's choice over what to offer after observing state 1's military threat and 3's diplomatic decision. The more 2 offers, the more likely is 1 to be a type that accepts, but the less favorable are 2's terms of settlement; the less 2 offers, the better the deal if accepted, but 1 is more likely to be a type that rejects. 2's proposal balances these risks and rewards, trading an acceptable chance of war for a better bargain if 1 accepts. Lemma 1 characterizes 2's proposal strategy for any combination of 1's threat \((s) \), beliefs that 2 might hold when it makes its proposal \((c_1 \sim U \in [c_1', c_1']) \), and 3's diplomatic decision \((j) \).

Lemma 1. For any \(s \), \(c_1 \sim U \in [c_1', c_1'] \) and \(j \), 2's equilibrium proposal is

\[
x = p(s) + \frac{c_2 - c_1' - d(1-j)}{2},
\]

which all types \(c_1 < p(s) - d(1-j) - x^* \) reject.

Equation (2) shows that 2 makes more generous offers, reducing the chances of rejection, when its own costs of war \((c_2) \) are high, its estimate of 1's maximum costs of war \((c_1') \) is low, and when 3 supports 1 \((j = 1) \). These last two elements reflect the tension in 1's initial choice: larger threats, by virtue of their cost, may convince 2 that 1's maximum costs of
war are low, producing more generous terms, but convincing 3 of the same fact can provoke
diplomatic opposition that reduces the attractiveness of 2’s offer, since 2 can propose to keep
more for itself if it knows that 3’s choice has increased 1’s costs of war.

The great power must also worry about provoking opposition from 3, who wishes to
support only when it believes that 1 is relatively restrained. This creates a dilemma for
the great power when 3 can credibly promise to condition its decision on the size of 1’s
military threat—i.e., when 3 offers diplomatic support for small threats but opposes large
ones. Otherwise, if 3 is guaranteed to either support or oppose 1 regardless of the size of
its military threat, the model collapses into a standard two-player signaling game. Lemma
2 characterizes the conditions under which 3 conditions it support on the size of the great
power’s threat, where \(E(c_1|s) \) is 3’s estimate of 1’s resolve based on 1’s threat (s).

Lemma 2. 3 plays a conditional strategy, supporting iff \(s = _ \) when \(r \phi u_3(E(c_1|\bar{s})) \leq \sigma < r \phi u_3(E(c_1|s)) \), where \(E(c_1|s) > E(c_1|\bar{s}) \) ensures that \(u_3(E(c_1|\bar{s})) < u_3(E(c_1|s)) \).

State 3 can condition its diplomatic strategy on the great power’s threat behavior when
the latter is more likely to make a large threat if aggressive than if restrained—that is, when
costly signals can separate types. This is precisely the condition needed for 1 to demonstrate
resolve to 2 and secure a more generous offer in standard two-player models, but it acti-
vates 1’s signaling dilemma once third-party diplomatic alignments are at stake. Lemma 2
expresses this condition in terms of a middling range of the costs of support (\(\sigma \)), such that
3 plays a conditional strategy when support is neither too expensive nor too cheap relative
to the consequences of the information revealed by 1’s threat. This condition supporting the
conditional strategy becomes easier to satisfy as the material threat posed by 1’s power (\(\phi \))
increases, which raises the stakes of 3’s diplomatic dilemma, and as 3’s opposition drains
more resources for future use (\(r \)). Thus, conditional third-party diplomatic strategies emerge
when (a) military threats are sufficiently costly to separate types, such that 3 can most ac-
curately refine its estimates of when 1 is worth opposing and supporting; (b) 1’s material
power poses a large future threat; and (c) the upfront costs of support are not too large. All
told, 3’s ability and desire to restrain 1’s willingness to wage war in equilibrium depends on how prevailing beliefs over 1’s intentions interact with 1’s choice of signal.

The Signaling Dilemma

I first characterize equilibria in which 3 supports or opposes the great power unconditionally, where the only PBE that exist entail the great power issuing the large threat \((s^* = \bar{s})\) regardless of its type. The target state’s information problem remains unaffected by either 1’s threat or 3’s diplomatic alignment, and if threat strategies are to emerge in which 1 makes the small threat, they must occur in other equilibria in which 3 conditions its choice on the size of 1’s mobilization. This facilitates comparison to equilibria that exist when 3 plays a conditional diplomatic strategy, which induces pooling on large threats under some conditions, as well as two additional equilibria: (a) a semi-separating equilibrium in which relatively resolute types of 1 make a large threat while restrained types issue the small threat and (b) a distinct pooling equilibrium in which 1 makes a small threat \((s^* = s)\) regardless of its type, securing 3’s support at the cost of leaving 2’s information problem unsolved, despite the availability of a credible signal. The promise of consequential third-party diplomatic support can render military threats credible signals of resolve, yet great powers will not always be incentivized to send such signals when they are available.

When 3 is unable to condition its strategy on the size of 1’s military threat, it either supports or opposes 1 unconditionally, the former when the costs of support are relatively low and the latter when the costs are relatively high.\(^6\) No barrier—here, the threat of losing diplomatic support—stands in the way of restrained types of 1 making large threats in order to bluff about their resolve. As a result, only one PBE exists: a pooling equilibrium in which 1 makes the large military threat regardless of its type.

Proposition 1. PBE with the following strategies exist when 3’s strategy is unconditional.

\(^6\)Unconditional strategies can also exist for the same values of \(\sigma\) that support conditional strategies, and the constraints supporting either unconditional strategy can overlap in middling ranges of \(\sigma\) as well. These strategies are unique, however, at extreme values of \(\sigma\).
(a.) When $\sigma \geq r\phi (c_1 + c'_1)/2$, where $c'_1 > c_1$ off the equilibrium path, there exists a pooling equilibrium in which $s^* = \bar{s}$ for all c_1 and 3 opposes 1 unconditionally.

(b.) When $\sigma < r\phi (c_1 + c'_1)/2$, there exists a pooling equilibrium in which $s^* = \bar{s}$ for all c_1 and 3 supports 1 unconditionally.

Proposition 1 confirms that the model generates patterns standard in the crisis bargaining literature when 3 supports 1 unconditionally. 2 is likelier to risk war when its own costs for war are low, and it is less likely to risk war with a miserly proposal when it believes that 1’s costs for war are low. With no disincentive to bluff, restrained types of 1 stand nothing to gain by revealing their type with a small threat, so they pool with lower-cost (more aggressive) types and leave state 2’s risk-return tradeoff unaffected. However, as shown in Equation (3), which characterizes the probability of war in any PBE with pooling on large threats, the probability of war is lower when 3 unconditionally opposes 1. Letting $j = 1$ for support and $j = 0$ for opposition, the equilibrium probability of war is

$$\Pr(\text{war}|j) = 1 - \frac{d(1 - j) + c_2 + c_1}{2(c_1 - c_1)},$$

which falls when 3 opposes ($j = 0$) and as the consequences of its opposition (d) grow more severe. Therefore, war is more likely when third parties generally believe the great power to be restrained, because 1 wins 3’s diplomatic support (and thus lower costs of war) by default. On the other hand, war is less likely when 1 is widely believed to be aggressive, because it is sure to provoke diplomatic opposition and face costlier wars if its threats go unheeded. Setting aside any potential effects on 1’s willingness to use threats as signals, 3’s opposition reduces the probability of war by increasing the range of settlements 1 accepts in lieu of war, regardless of its type. This reduction in the probability of war comes at 1’s expense, however, because 1 receives less favorable offers. This creates a strategic incentive to seek out 3’s diplomatic support when possible.

If the costs of diplomatically supporting 1 fall in a middling range, or $r\phi u_3(\mathbb{E}(c_1|\bar{s})) \leq$
\[\sigma < r\phi u_3(\mathbf{E}(c_1|S)) \], new information about 1’s type can influence 3’s decision. As a result, 3 can credibly condition its strategy on the size of the great power’s military threat, offering diplomatic support only in the event of small mobilizations. This can alter 1’s signaling strategy when 3’s opposition causes a sufficiently large increase in the costs of war, i.e. when \(d \) is large enough (\(d \geq M \)). Proposition 2 states that the large-threat pooling equilibrium exists, despite 3 conditioning support on the size of the threat, when 3 can only minimally raises the costs of war (\(d \leq 2M \)); however, as \(d \) increases such that 3’s opposition is more damaging to the great power’s total costs of war, other equilibria emerge with altogether different implications for the credibility of signals of resolve, the great power’s willingness to send them, and the probability that the dispute escalates to war.

Proposition 2. PBE with the following strategies exist when 3 supports iff \(s^* = \bar{s} \).

(a.) When \(d \leq 2M \) and \(r\phi(\bar{c}_1 + c_1)/2 \leq \sigma < r\phi(\bar{c}_1 + c'_1)/2 \), where \(c'_1 > c_1 \) off the equilibrium path, there exists a pooling equilibrium in which \(s^* = \bar{s} \) for all \(c_1 \).

(b.) When \((2M + c_2 + \bar{c}_1) < d < (2M + c_2 + \bar{c}_1) \) and \(r\phi(\hat{c}_1 + c_1)/2 \leq \sigma < r\phi(\bar{c}_1 + \hat{c}_1)/2 \), there exists a semi-separating equilibrium in which \(s^* = \bar{s} \) for \(c_1 < \hat{c}_1 \) and \(s^* = \bar{s} \) for \(c_1 \geq \hat{c}_1 \).

(c.) When \(d \geq M \) and \(r\phi(\bar{c}_1 + c_1)/2 \leq \sigma < r\phi(\bar{c}_1 + c_1)/2 \), where \(\bar{c}_1' < \bar{c}_1 \) off the equilibrium path, there exists a pooling equilibrium in which \(s^* = \bar{s} \) for all \(c_1 \).

See appendix for proof.

When 3’s opposition has little to no impact on 1’s costs of war, even a conditional strategy cannot dissuade restrained types of 1 from bluffing with the issuance of large threats. When \(d \leq 2M \), 3’s opposition is largely symbolic; 1 tolerates diplomatic opposition and makes a large threat regardless of its type, because restrained types are happy to take advantage of 2’s uncertainty and bluff, just as they are in the equilibrium with unconditional opposition in Proposition 1 (where, in effect, \(d = 0 \)). As the material costs of 3’s diplomatic opposition increase, however, the great power’s temptation to convey a willingness to fight decreases,
and more restrained types are discouraged from using a large threat to mimic resolute types. When 3 can credibly promise to support only small mobilizations, it may bolster its long-run interest in constraining expansionist great powers. However, wielding that diplomatic threat can lead to unintended crisis bargaining outcomes in the short term.

When third parties condition their diplomatic support on the size of great powers’ military threats, those great powers respond by strategically choosing the size of their threats. If restrained types of 1 are unwilling to provoke opposition in order to convey resolve, the threat of diplomatic opposition sometimes redounds to 3’s advantage; when \(d \) is large (but not too large), such that \((2M + c_2 + c_1) < d < (2M + c_2 + c_1) \), a semi-separating equilibrium exists in which 1 issues large threats only when relatively resolute. When 1 is restrained, it is happy to reveal itself as such, because the expected gains from conveying resolve are offset by the cost savings of earning 3’s diplomatic support, which it wishes to give if assured that 1 is relatively restrained. The threat of provoking third-party diplomatic opposition disciplines the incentive to bluff—an additional cost to large mobilizations that makes communication credible, whether the great power avoids the large mobilization or not. The third party’s promise of support can discourage bluffing that might otherwise occur, allowing both restrained and aggressive states to win concessions peacefully—the latter revealing their willingness to fight by provoking diplomatic opposition.

Ikenberry (2001) terms the pursuit of limited aims in order to win broad diplomatic support “strategic restraint,” and it succeeds in the semi-separating equilibrium; those great powers most restrained in the use of force build diplomatic coalitions by limiting the size of their military threats. Proposition 2 shows that this sanguine view of strategic restraint is only valid, however, when 3’s diplomatic alignment has only a modest impact on the costs of war. When losing third-party diplomatic support affects the costs of war substantially, 3’s conditional strategy loses its ability to discipline great power threats and instead discourages the revelation of information. When \(d \geq M \), 1 plays a pooling equilibrium that turns the logic of bluffing on its head: aggressive types mimic restrained types, securing
Table 1: Probability of war by equilibrium strategies

<table>
<thead>
<tr>
<th>3’s strategy</th>
<th>1’s strategy</th>
<th>Probability of war</th>
</tr>
</thead>
<tbody>
<tr>
<td>When $\sigma < r_{3}(E(c_{1}</td>
<td>\bar{s})),$</td>
<td>Support $\forall s$ Pool on $s^* = \bar{s}$</td>
</tr>
<tr>
<td>When $r_{3}(E(c_{1}</td>
<td>\bar{s})) \leq \sigma < r_{3}(E(c_{1}</td>
<td>s)),$</td>
</tr>
<tr>
<td></td>
<td>Support iff $s^* = s$ $s^* = \bar{s}$ if $c_1 < \hat{c}_1,$ $s^* = \bar{s}$ if $c_1 \geq \hat{c}_1$</td>
<td>$1 - (d + c_2 + \hat{c}_1)/2(\hat{c}_1 - c_1)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1 - (c_2 + \bar{c}_1)/2(\bar{c}_1 - \hat{c}_1)$</td>
</tr>
<tr>
<td></td>
<td>Oppose $\forall s$ Pool on $s^* = \bar{s}$</td>
<td>$1 - (d + c_2 + \bar{c}_1)/2(\bar{c}_1 - c_1)$</td>
</tr>
</tbody>
</table>

diplomatic support by choosing a small mobilization. The most aggressive types of state 1, which 3 would like to oppose, refuse to reveal themselves, accepting a low-cost war rather than tolerate a peaceful settlement reflecting the substantial costs of 3’s diplomatic opposition. In this sense, strategic restraint can have a dark side. Great powers work hard to limit their threats in order to build diplomatic coalitions, in the process (a) preventing third parties from opposing the most aggressive great powers and (b) sustaining 2’s information problem—and an elevated probability of war—despite the availability of a credible signal that would convince 2 of 1’s willingness to fight, if only it were sent.

Table 1 shows that when 1 foregoes a credible signal of resolve in order to win 3’s diplomatic support (when it pools on the small threat), the probability of war equals that found in Equation (3) when $j = 1.$ 2’s prior beliefs are unaltered, and since 1 does not pay additional costs for fighting, the probability of war is just as high as it is in a world where 3 supports unconditionally (a world of high ex ante trust in 1’s restraint). While 3 supports some types of 1 that it regret after the fact, the probability of war in this pooling on low-threats equilibrium is not the highest in the game. When 3’s impact on the costs of war is greatest (when d is sufficiently large), war is tragically most likely in precisely those cases where
3 is happiest offering 1 its diplomatic support—that is, when 1 plays the semi-separating equilibrium and reveals itself to be relatively restrained \((s^* = \bar{s})\)—as it emboldens state 2 to risk war with its proposal. On the other hand, war is less likely in the same semi-separating equilibrium when 3 opposes after a large threat \((s^* = \bar{s})\), because 2 can secure ever more favorable bargains as 2’s costs of war increase.\(^7\) Therefore, when its support is most valuable, 3 achieves its goal of opposing aggressive great powers at the cost of increasing the probability that today’s dispute ends in war—yet when 1 does provoke opposition, the probability of war falls to its lowest level in any equilibrium so long as \(d\) is sufficiently large.

The model thus offers an explanation for why great powers can build large diplomatic coalitions only to see their targets still doubt their willingness to wage war: the process of signaling restraint that ensures diplomatic support can also preserve doubts in an opponent’s mind that the great power building the coalition is truly committed to fighting. Building coalitions requires concessions (Kreps 2011, Riker 1962, Wolford 2015), and sustaining support for one’s position in the global power hierarchy may require compromise in the direction of restraint. In aid of securing both local and broader regional support for the reversal of Iraq’s annexation of Kuwait, for example, the United States targeted its 1990-91 buildup narrowly at Kuwait and southeastern Iraq (Atkinson 1993, Bush and Scowcroft 1998). This secured a large body of diplomatic support for the preservation of recognized international borders (Kreps 2011), but it had the unintended consequence of preserving some optimism in the Iraqi leadership that it could bog the coalition down in a costly, narrow-front war in rough terrain (on this point, see Lindsey n.d.). Only after the successful execution of the armored “left hook” strategy would Iraq be disabused of the notion that the coalition arrayed against it faced significant costs for prosecuting the war. Likewise, the United States consented to limited military threats—i.e., an air campaign in lieu of a ground invasion—against Serbia before the Kosovo War of 1999 (Clark 2001, Henriksen 2007, Richardson 2000), which preserved both diplomatic support and Serbian doubts about

\(^7\)Recall that \(\hat{c}_1\) is the threshold (defined in Proposition 2) separating those types of 1 that issue small \((c_1 \leq \hat{c}_1)\) and large \((c_1 > \hat{c}_1)\) threats.
NATO’s collective willingness to wage a lengthy war (Wolford 2015, Ch. 4).

Finally, it is worth noting that third parties can discipline the bluffing behavior of informed states in other models, but these third parties are typically another domestic actor in the same state (Arena 2015, Schultz 1998). The present theory shows that even militarily marginal but diplomatically valuable states can perform the same function during interstate conflicts involving great powers and that their disciplining function can break down when that diplomatic support is too valuable in reducing the costs of war. Where Wolford (2014b) links the diversity of preferences within military coalitions to the probability of war, the present model shows that the distribution of minor-power beliefs about great power restraint, an essential part of the ideational structure of the international system, can shape the chances that any particular crisis involving a great power escalates to war—even when those minor powers judging great power intentions do not enter the war as belligerents.

Conclusion

Great powers have the means to do as they please, but those same means create fears in other states of future exploitation, ensuring that great powers are also constrained by prevailing system-wide beliefs about their willingness to use force. Extant scholarship has identified several means by which great powers can facilitate diplomatic cooperation with potentially mistrustful third parties, but the potential strategic consequences of this process are only rarely explored. Even states unable to affect the immediate balance of military capabilities can shape the costs war to a significant degree through diplomatic support or opposition. When these decisions have even a modest impact on a great power’s costs for waging war, the desire to construct a diplomatic coalition can simultaneously make signaling resolve easier and less attractive. Whether great powers can and wish to signal resolve credibly during particular crises depends on a structural feature of the international system: prevailing beliefs among third parties about whether great powers are restrained or aggres-
sive. As an exploratory model (see Clarke and Primo 2012, Ch. 4), the theory identifies potential causal links between processes and levels of analysis often viewed as disparate.

Two of the model’s key results, that diplomatic coalition-building can either facilitate or discourage the credible revelation of information, have been shown to apply to military coalitions (Wolford 2014b) and alliances (Benson 2012, Trager 2015) in different measure. I show that they can also emerge under more demanding conditions: when third parties and targets are equally uncertain over a great power’s costs for war, when third parties have an incentive to balance diplomatically against great powers, and when the consequences of their support are strictly limited to altering the costs of war. Great powers generally have the capacity to act alone and to engage in large, costly military mobilizations, but their incentives to do so may be limited when diplomatic support makes foreign wars worth the costs of waging them. As the United States, its friends, and its allies navigate a new period of possible relative decline and intensified great power competition, framed by renewed Chinese and Russian assertiveness in their respective former imperial domains, the stakes of securing diplomatic support from minor powers are only likely to grow.

To the extent that great powers are concerned with securing broad diplomatic support, the model identifies an endogenous and reciprocal link between a systemic variable, i.e. prevailing beliefs over the restraint of particular great powers, and the risk of war in individual crises. The distribution of beliefs determines the ease with which support is gained, while securing it (or failing to) also changes prevailing assessments of restraint for future interactions. Particular constellations of beliefs dictate whether third parties play conditional diplomatic strategies, but in the aggregate, the probability of war in a given great power crisis should be greater when world opinion is more trusting of that state’s foreign policy ambitions. The actions that great powers take in crises can shape the prevailing level of trust for subsequent crises; individual disputes are both affected by and affect the structure of the international system. System-level variables—configurations of military power (Mansfield 1994, Monteiro 2011/12), distributions of ideology (Braumoeller 2012, Kadera, Crescenzi
and Shannon 2003, Mitchell 2002), and the offense-defense balance (Jervis 1978)—are often linked to the risk of war. The present model shows that the distribution of beliefs among militarily unimportant yet diplomatically valuable states can alter the risks of war for the most militarily important states in the system: the great powers.

The model offers a novel solution to the enduring puzzle of why great powers—possessed of substantial economic and military capabilities and able to make significant public threats, both of which augur well for conveying resolve—sometimes fail to send credible signals of their willingness to fight (see Fearon 1997, Sechser 2010), even after building large and ostensibly overwhelming diplomatic coalitions. Unambiguous signals are rare in crisis bargaining, and while this may stem from leaders' pragmatic desires to keep options open or appease domestic audiences (Snyder and Diesing 1977), aggregate beliefs among smaller states over the restraint of particular great powers may also discourage effective separating signals, even when such signals are available to those states most able to engage in large mobilizations. On the other hand, the risk of forfeiting critical diplomatic support might facilitate credible signaling on the part of states typically disadvantaged in tying hands before domestic constituencies (see Fearon 1994, Weeks 2008, Weiss 2013). Thus, a specific feature of the international system can induce patterns of third-party diplomatic alignments, opponent bargaining positions, and great power signaling, associated with varying levels of information transmission and risks of war, absent any meaningful variation in either international institutions, the distribution of power, or domestic politics. The presence of diplomatic support, especially when it forces great powers into limited threats, may be a crucial omitted variable in dyadic studies of the success of coercive threats in crisis bargaining.

Finally, the theory suggests that the concept of “world opinion” plays a more important role in great power politics than generally accepted; the distribution of beliefs can be viewed as a meaningful element of the structure of the international system, an ideational element of structure (Wendt 1999) that can change more frequently than material elements like the distributions of power or political regimes and ideologies. During the Cold War, for
example, nonaligned states sought to “tilt without tipping” (Gaddis 2005, p. 122), punishing a superpower’s lack of restraint by opposing it in particular crises, all in the service of “resisting superpower hegemony” (pp. 123-4). These decisions are not without consequence when diplomatic alignments can alter the costs of war; both the United States and the Soviet Union tried to win the diplomatic support of “anti-bloc” third-party states in hopes of lowering their own costs of war (Lane 2003, pp. 151-2, 166). When cultivating diplomatic coalition partners requires adjustments to military threats—as happened in moments as diverse as the July Crisis of 1914 (Clark 2012, Hastings 2013), the Berlin Crisis of 1961 (Aono 2010, Freedman 2000), the Persian Gulf War of 1991 (Atkinson 1993, Kreps 2011), and the Kosovo Crisis of 1999 (Clark 2001, Wolford 2015)—and when failures of reassurance result in third-party opposition—as it did in the Iraq War of 2003—diplomatic coalition-building is not mere rhetoric; it may determine whether particular great power crises are settled peacefully or end in war. Strategic restraint, useful for great powers in creating a sustainable international order in the long run, may come at the cost of an increased risk of war in the short run, depending on the ideational structure of the international system.

Appendix

Proof of Lemma 1. Begin with 1’s acceptance rule, which stipulates that it accepts some x when $x \geq p(s) - c_1 - d(1 - j)$, such that 1 accepts iff $c_1 \geq p(s) - d(1 - j) - x$. Given beliefs $c_1 \sim U[\underline{c}_1, \overline{c}_1]$, 2 sets x to solve $\max_x \{EU_2(x)\}$, or

$$\max_x \left\{ \int_{\underline{c}_1}^{p(s) - d(1 - j) - x} (1 - p(s) - c_2) \, dx + \int_{p(s) - d(1 - j) - x}^{\overline{c}_1} (1 - x) \, dx \right\}.$$

The first order condition is $2(p(s) - x) + c_2 - \overline{c}_1 - d(1 - j) = 0$, which yields an optimum at

$$x^* = p(s) + \frac{c_2 - \overline{c}_1 - d(1 - j)}{2},$$
and since $\partial^2 EU_2(x)/\partial x^2 = -2$, x^* is sure to yield a maximum.

Proof of Lemma 2. Two inequalities must be true. First, 3 supports if $s = \underline{s}$ when

$$-\sigma + \phi u_3 (\mathbb{E}(c_1 | \underline{s})) > (1 - r) \phi u_3 (\mathbb{E}(c_1 | \underline{s})),$$

or when $\sigma < r \phi u_3 (\mathbb{E}(c_1 | \underline{s}))$. Second, 3 opposes if $s = \bar{s}$ when

$$(1 - r) \phi u_3 (\mathbb{E}(c_1 | \bar{s})) \geq -\sigma + \phi u_3 (\mathbb{E}(c_1 | \bar{s})), $$

or when $\sigma \geq r \phi u_3 (\mathbb{E}(c_1 | \bar{s}))$. Therefore, 3 plays a conditional strategy when

$$r \phi u_3 (\mathbb{E}(c_1 | \bar{s})) \leq \sigma < r \phi u_3 (\mathbb{E}(c_1 | \underline{s})), $$

supporting unconditionally when σ falls below this range and opposing unconditionally when σ falls above.

Proof of Proposition 1. For the equilibrium in which 3 opposes unconditionally, strategies and beliefs are as follows. 1 sets $s^* = \bar{s}$, accepts iff $c_1 \geq p(\bar{s}) - d - x$ on the equilibrium path and accepts iff $c_1 \geq p(s) - d - x$ off the equilibrium path. On the equilibrium path, 2 and 3 retain their prior beliefs, and off the equilibrium path they believe $c_1 \sim [c_1', \bar{c}_1]$, where $\underline{c}_1 < c_1'$ such that higher-cost types are believed to be more tempted to save the costs of large mobilization than lower-cost types. By Lemma 1, 2 proposes $x^* = p(\bar{s}) + (c_2 - \bar{c}_1 - d)/2$ on the equilibrium path and $x' = p(s) + (c_2 - \bar{c}_1 - d)/2$ off the equilibrium path. 3 opposes on and off the equilibrium path.

Since $c_1 < c_1'$ and only relatively restrained types are believed to have deviated to the low threat, showing that 3 opposes off the equilibrium path is sufficient to show that it will
oppose on the path as well. Therefore,

\[(1 - r)\phi \int_{c_1}^{\bar{c}_1} \left(c_1 \times \frac{1}{c_1 - c_1'} \right) dc_1 \geq -\sigma + \phi \int_{c_1}^{\bar{c}_1} \left(c_1 \times \frac{1}{c_1 - c_1'} \right) dc_1,
\]

which reduces to \(\sigma \geq r\phi(\bar{c}_1 + c_1')/2 \), establishes 3’s behavior in and out of equilibrium. Finally, I establish that the highest-cost type of 1 \((c_1 = \bar{c}_1)\) issues the large threat rather than deviate to the small threat and induce the other players to believe that it is relatively irresolute; if this type will not deviate to a lower-cost threat, then no types will. This is a type that accepts 2’s offer in and out of equilibrium, so it sets \(s = \bar{s} \) when \(-a\bar{s} + x^* \geq -a\bar{s} + x', \) or when \((p(\bar{s}) - p(s)) - a(\bar{s} - s) \geq 0 \), which is true by construction.

For the equilibrium in which 3 supports unconditionally, strategies and beliefs are as follows. 1 sets \(s^* = \bar{s} \), accepts iff \(c_1 \geq p(\bar{s}) - x \) on the equilibrium path and accepts iff \(c_1 \geq p(s) - x \) off the equilibrium path. On the equilibrium path, 2 and 3 retain their prior beliefs, and off the equilibrium path they believe \(c_1 \sim [c_1', \bar{c}_1] \), where \(c_1 < c_1' \) such that higher-cost types are believed to be more tempted to save the costs of large mobilization than lower-cost types. By Lemma 1, 2 proposes \(x^* = p(\bar{s}) + (c_2 - \bar{c}_1)/2 \) on the equilibrium path and \(x' = p(s) + (c_2 - \bar{c}_1)/2 \) off the equilibrium path. 3 supports on and off the equilibrium path.

Since \(c_1 < c_1' \) and only relatively restrained types are believed to have deviated to the low threat, showing that 3 supports on the equilibrium path is sufficient to show that it will support off the path as well. Therefore,

\[-\sigma + \phi \int_{c_1}^{\bar{c}_1} \left(c_1 \times \frac{1}{c_1 - c_1'} \right) dc_1 > (1 - r)\phi \int_{c_1}^{\bar{c}_1} \left(c_1 \times \frac{1}{c_1 - c_1'} \right) dc_1,
\]

which reduces to \(\sigma < r\phi(\bar{c}_1 + c_1')/2 \), establishes 3’s behavior in and out of equilibrium. Finally, I establish that the highest-cost type of 1 \((c_1 = \bar{c}_1)\) issues the large threat rather than deviate to the small threat and induce the other players to believe that it is relatively irresolute; if this type will not deviate to a lower-cost threat, then no types will. This is a type that accepts 2’s offer in and out of equilibrium, so it sets \(s = \bar{s} \) when \(-a\bar{s} + x^* \geq -a\bar{s} + x', \) or when
\[(p(\bar{s}) - p(s)) - a (\bar{s} - \bar{s}) \geq 0, \] which is true by construction. \medskip

Proof of Proposition 2. For the equilibrium in which 1 pools on the high threat, strategies and beliefs are as follows. 1 sets \(s^* = \bar{s}\), accepts iff \(c_1 \geq p(\bar{s}) - d - x\) on the equilibrium path and accepts iff \(c_1 \geq p(\bar{s}) - x\) off the equilibrium path. On the equilibrium path, 2 and 3 retain their prior beliefs, and off the equilibrium path they believe \(c_1 \sim [c'_1, \bar{c}_1]\), where \(\bar{c}_1 < c'_1\) such that only relatively restrained types would be tempted to deviate to the low threat, saving the costs of a large mobilization and avoiding 3’s opposition. By Lemma 1, 2 proposes \(x^* = p(\bar{s}) + (c_2 - \bar{c}_1 - d)/2\) on the equilibrium path and \(x' = p(\bar{s}) + (c_2 - \bar{c}_1)/2\) off the equilibrium path. 3 opposes on the equilibrium path and supports off the equilibrium path.

Two inequalities must be satisfied for 3’s strategy to be sequentially rational. On the equilibrium path, 3 opposes when

\[(1 - r)\phi \int_{c_1}^{\bar{c}_1} \left(c_1 \times \frac{1}{c_1 - \bar{c}_1} \right) dc_1 \geq -\sigma + \phi \int_{c_1}^{\bar{c}_1} \left(c_1 \times \frac{1}{c_1 - \bar{c}_1} \right) dc_1,\]

or when \(\sigma \geq r\phi(c_1 + \bar{c}_1)/2\). Off the equilibrium path, it supports when

\[-\sigma + \phi \int_{c'_1}^{\bar{c}_1} \left(c_1 \times \frac{1}{c_1 - \bar{c}_1} \right) dc_1 \geq (1 - r)\phi \int_{c'_1}^{\bar{c}_1} \left(c_1 \times \frac{1}{c_1 - \bar{c}_1} \right) dc_1,\]

or when \(\sigma < r\phi(c'_1 + \bar{c}_1)/2\). Therefore, 3’s strategy is sequentially rational when \(r\phi(c_1 + \bar{c}_1)/2 \leq \sigma < r\phi(c'_1 + \bar{c}_1)/2\). Finally, I show that the highest-cost type of 1 \((c_1 = \bar{c}_1)\) issues the large threat rather than deviate to the small threat and induce the other players to believe that it is relatively irresolute; if this type will not deviate to a lower-cost threat, then no types will. This is a type that accepts 2’s offer in and out of equilibrium, so it sets \(s^* = \bar{s}\) when \(-a\bar{s} + x^* \geq -a\bar{s} + x',\) or when \(d \leq 2(p(\bar{s}) - p(s)) - a (\bar{s} - s) \equiv 2M\).

For the semi-separating equilibrium, strategies and beliefs are as follows. 1 sets \(s^* = \bar{s}\) and accepts iff \(c_1 \geq p(\bar{s}) - x\) when \(c_1 \geq \hat{c}_1\), and it sets \(s^* = \bar{s}\) and accepts iff \(c_1 \geq p(\bar{s}) - d - x\) when \(c_1 < \hat{c}_1\). 2 and 3 believe that \(c_1 \sim [\hat{c}_1, \bar{c}_1]\) if \(s^* = \bar{s}\) and that \(c_1 \sim [c'_1, \hat{c}_1]\) if \(s^* = \bar{s}\); there are no out of equilibrium beliefs. By Lemma 1, 2 proposes \(x^* = p(\bar{s}) + (c_2 - \hat{c}_1 - d)/2\) if \(s^* = \bar{s}\) and \(x' = p(\bar{s}) + (c_2 - \hat{c}_1)/2\) if \(s^* = \bar{s}\).
and $x' = p(s) + (c_2 - \tilde{c}_1)/2$ if $s^* = s$. 3 opposes if $s^* = \bar{s}$ and supports if $s^* = \underline{s}$.

Two inequalities must be satisfied for 3’s strategy to be sequentially rational. If $s^* = \bar{s}$, 3 opposes when

$$(1 - r)\phi \int_{\xi_1}^{\hat{c}_1} \left(c_1 \times \frac{1}{\hat{c}_1 - \bar{c}_1} \right) dc_1 \geq -\sigma + \phi \int_{\xi_1}^{\hat{c}_1} \left(c_1 \times \frac{1}{\hat{c}_1 - \bar{c}_1} \right) dc_1,$$

or when $\sigma \geq r\phi(\hat{c}_1 + \bar{c}_1)/2$. If $s^* = \underline{s}$, 3 supports when

$$-\sigma + \phi \int_{\xi_1}^{\bar{c}_1} \left(c_1 \times \frac{1}{\bar{c}_1 - \hat{c}_1} \right) dc_1 > (1 - r)\phi \int_{\xi_1}^{\bar{c}_1} \left(c_1 \times \frac{1}{\bar{c}_1 - \hat{c}_1} \right) dc_1,$$

or when $\sigma < r\phi(\bar{c}_1 + \hat{c}_1)/2$. Therefore, 3’s strategy is sequentially rational when $r\phi(\hat{c}_1 + c_1)/2 \leq \sigma < r\phi(\bar{c}_1 + \hat{c}_1)/2$. It remains to show that 1’s signaling strategy is incentive-compatible. Begin by identifying \hat{c}_1, or the type that is indifferent over issuing the small threat (which leads to rejection and 3’s support) and the large threat (which leads to acceptance and 3’s opposition). This type satisfies $-as + x^* = -as + p(s) - \hat{c}_1$, such that

$$\hat{c}_1 = d - c_2 - 2(p(\bar{s}) - p(s)) + 2a(\bar{s} - s).$$

Next, to ensure that this is a plausible type, it must be the case that $c_1 < \hat{c} < \bar{c}_1$. This is the case when

$$2\left((p(\bar{s}) - p(s)) - a(\bar{s} - s) \right) + c_2 + c_1 < d < 2\left((p(\bar{s}) - p(s)) - a(\bar{s} - s) \right) + c_2 + \bar{c}_1,$$

or, equivalently, when $(2M + c_2 + c_1) < d < (2M + c_2 + \bar{c}_1)$.

For the equilibrium in which 1 pools on the low threat, strategies and beliefs are as follows. 1 sets $s^* = s$, accepts iff $c_1 \geq p(s) - x$ on the equilibrium path and accepts iff $c_1 \geq p(\bar{s}) - d - x$ off the equilibrium path. On the equilibrium path, 2 and 3 retain their prior beliefs, and off the equilibrium path they believe $c_1 \sim [\underline{c}_1, \bar{c}'_1]$, where $\bar{c}'_1 < \bar{c}_1$ such that only
relatively aggressive types would be tempted deviate to the high threat, more willing to
tolerate the costs of mobilization and diplomatic opposition. By Lemma 1, 2 proposes $x^* = p(s) + (c_2 - \bar{c}_1)/2$ on the equilibrium path and $x' = p(\bar{s}) + (c_2 - \bar{c}_1 - d)/2$ off the equilibrium path. 3 supports on the equilibrium path and opposes off the equilibrium path.

Two inequalities must be satisfied for 3’s strategy to be sequentially rational. On the
equilibrium path, 3 supports when

$$-\sigma + \phi \int_{\xi_1}^{\bar{c}_1} \left(c_1 \times \frac{1}{\bar{c}_1 - c_1} \right) \, dc_1 > (1 - r) \phi \int_{\xi_1}^{\bar{c}_1} \left(c_1 \times \frac{1}{\bar{c}_1 - c_1} \right) \, dc_1,$$

or when $\sigma < r \phi (\bar{c}_1 + c_1)/2$. Off the equilibrium path, 3 opposes when

$$(1 - r) \phi \int_{\xi_1}^{\bar{c}_1} \left(c_1 \times \frac{1}{\bar{c}_1 - c_1} \right) \, dc_1 \geq \sigma + \phi \int_{\xi_1}^{\bar{c}_1} \left(c_1 \times \frac{1}{\bar{c}_1 - c_1} \right) \, dc_1,$$

or when $\sigma \geq r \phi (\bar{c}_1 + c_1)/2$. Therefore, 3’s strategy is sequentially rational when $r \phi (\bar{c}_1 + c_1)/2 \leq \sigma \leq r \phi (\bar{c}_1 + c_1)/2$. Finally, I show that the lowest-cost type of 1 ($c_1 = \xi_1$) issues the small threat rather than deviate to the large threat and induce the other players to believe that it is relatively resolute; if this type will not deviate to a higher-cost threat, then no types will. This is a type that rejects 2’s offer in and out of equilibrium, so it sets $s^* = s$ when

$$-a\bar{s} + p(s) - c_1 \geq -a\bar{\bar{s}} + p(\bar{s}) - \bar{c}_1 - d,$$

or when $d \geq (p(\bar{s}) - p(s)) - a(\bar{s} - s) \equiv M$. \qed
References

